Circle of confusion for depth of field calculations

Previous topic - Next topic

0 Members and 1 Guest are viewing this topic.

rogerxnz

Jerome stated in this forum's discussion on hyperfocal distances:

Quote from: jerome_m on May 19, 2015, 09:11:10 AM
The classical formulas for hyperfocal distance and depth of field are based on the assumption of a relatively small "standard print" (or, what is equivalent, bigger prints observed from further away). In practice, digital MF cameras are often used to make much bigger prints which are not observed from far away and the formulas do not work very well.

So how do you calculate a CoC for big prints that might be viewed up close?
Roger

jerome_m

There is actually an article in Wikipedia on this exact subject: https://en.wikipedia.org/wiki/Circle_of_confusion#Circle_of_confusion_diameter_limit_in_photography

Citation:


In photography, the circle of confusion diameter limit ("CoC") for the final image is often defined as the largest blur spot that will still be perceived by the human eye as a point.

With this definition, the CoC in the original image (the image on the film or electronic sensor) depends on three factors:

  • Visual acuity. For most people, the closest comfortable viewing distance, termed the near distance for distinct vision (Ray 2000, 52), is approximately 25 cm. At this distance, a person with good vision can usually distinguish an image resolution of 5 line pairs per millimeter (lp/mm), equivalent to a CoC of 0.2 mm in the final image.
  • Viewing conditions. If the final image is viewed at approximately 25 cm, a final-image CoC of 0.2 mm often is appropriate. A comfortable viewing distance is also one at which the angle of view is approximately 60° (Ray 2000, 52); at a distance of 25 cm, this corresponds to about 30 cm, approximately the diagonal of an 8″×10″ image. It often may be reasonable to assume that, for whole-image viewing, a final image larger than 8″×10″ will be viewed at a distance correspondingly greater than 25 cm, and for which a larger CoC may be acceptable; the original-image CoC is then the same as that determined from the standard final-image size and viewing distance. But if the larger final image will be viewed at the normal distance of 25 cm, a smaller original-image CoC will be needed to provide acceptable sharpness.
  • Enlargement from the original image to the final image. If there is no enlargement (e.g., a contact print of an 8×10 original image), the CoC for the original image is the same as that in the final image. But if, for example, the long dimension of a 35 mm original image is enlarged to 25 cm (10 inches), the enlargement is approximately 7×, and the CoC for the original image is 0.2 mm / 7, or 0.029 mm.

The common values for CoC may not be applicable if reproduction or viewing conditions differ significantly from those assumed in determining those values. If the original image will be given greater enlargement, or viewed at a closer distance, then a smaller CoC will be required. All three factors above are accommodated with this formula:

CoC (mm) = viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25

For example, to support a final-image resolution equivalent to 5 lp/mm for a 25 cm viewing distance when the anticipated viewing distance is 50 cm and the anticipated enlargement is 8:

CoC = 50 / 5 / 8 / 25 = 0.05 mm